Where did the god particle come from?

The nickname was intended to make fun of how difficult it was to detect the particle. It took nearly half a century and a multi-billion dollar particle accelerator to do so. In addition, the investigation of this elusive particle will deepen during the third round of the LHC and, in particular, when the upgrade to the high luminosity of the particle accelerator is completed in 2029 (opens in a new tab). Finding this particle would give an idea of why certain particles have mass and would help develop later physics.

As scientists neared the end of the 20th century, advances in particle physics had answered many questions related to the fundamental components of nature. However, as physicists populated the particle zoo with electrons, protons, bosons and all kinds of quarks, some pressing questions remained unanswered. The particle was detected both by the LHC ATLAS detector and by the Compact Muon Solenoid (CMS) detector. CERN estimates that, after the update each year, the accelerator will create 15 million of these particles.

Particles, such as protons, made up of quarks obtain most of their mass from the bonding energy that holds their components together. However, for this unification to work mathematically, force-carrying particles are required to have no mass. For example, when two electrons interact, they exchange a photon, the particle that carries force in electromagnetic fields. A boson is a force-carrying particle that comes into play when particles interact with each other, and a boson is exchanged during this interaction.

Once created, it transforms (or “decays”) into other particles that can be detected in particle detectors. This is because the spontaneous rupture of symmetry does not occur with photons as with their companion force-carrying particles, the W and Z bosons. In the search for this particle, accelerator and detector technologies were pushed to the limit, leading to advances in healthcare, aerospace and more. For example, the photon, which is the particle of light that carries electromagnetic force, has no mass.

The mass of a particle determines how much it resists changing its velocity or position when it encounters a force.

Keisha Tytler
Keisha Tytler

Hipster-friendly web expert. Evil music trailblazer. Devoted bacon scholar. Amateur tv scholar. Proud web maven. General tv enthusiast.

Leave Reply

All fileds with * are required